hydrogen-bond distances lie between 1.88 and $1.97 \AA$. These are longer than in the crystal structure of ethanol (Jönsson, 1976) where the hydrogen bonding forms infinite chains with corrected H...O distances of 1.75 \AA. In order to form the closed loop, two of the four $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles are less than the theoretical value of 163° for the most probable temperature-dependent $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle (Newton, Jeffrey \& Takagi, 1978).

References

Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.

Hatt, H. H. (1956). Rev. Pure Appl. Chem. 6, 154-189.
Jeffrey, G. A. (1969). Acc. Chem. Res. 2, 344-352.
Jeffrey, G. A. \& Mastropaolo, D. (1978). Acta Cryst. B34, 552-556.
Jeffrey, G. A. \& Shen, M. S. (1972). J. Chem. Phys. 57, 56-61.
Jeffrey, G. A. \& Takagi, S. (1978). Acc. Chem. Res. 11, 264-270.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Jönsson, P.-G. (1976). Acta Cryst. B32, 232-235.
Kim, H. S. \& Jeffrey, G. A. (1970). J. Chem. Phys. 53, 3610-3615.
Newton, M., Jeffrey, G. A. \& Takagı, S. (1978). J. Am. Chem. Soc. Submitted for publication.

A Twelve-Membered-Ring Organophosphorus Compound: cis-2,8-Dithioxo-2,5,5,8,11,11-hexamethyl-1,3,7,9-tetraoxa-2,8-diphosphacyclododecane

By J. P. Dutasta, A. Grand* and J. B. Robert*
Laboratoire de Chimie Organique Physique, Centre d'Etudes Nucléaires de Grenoble, Equipe de Recherche Associée au CNRS $n^{\circ} 674,85$ X, F-38041 Grenoble CEDEX, France

(Received 30 May 1978; accepted 22 August 1978)

Abstract

C}_{12} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~S}_{2}, M_{r}=360 \cdot 41\), triclinic $P \overline{1}, a=$ $6.422(1), b=9.155(1), c=16.738$ (1) $\AA, \alpha=$ 84.64 (2), $\beta=89.87(1), \gamma=70.30(2)^{\circ}, V=922 \AA^{3}$, $D_{x}=1.299 \mathrm{Mg} \mathrm{m}^{-3}, Z=2$. The structure was refined to $R=0.073$ for 2227 observed data. The twelvemembered ring adopts a square conformation close to that found for cyclododecane. The substituted C and the P atoms are placed in the corner positions. The $\mathrm{O}-\mathrm{P}-\mathrm{O}$ and the $\mathrm{P}-\mathrm{O}-\mathrm{C}$ ring angles are larger than in the corresponding monomer.

Introduction. It has been established that cyclic phosphonite molecules of various ring sizes, e.g. fivemembered 1,3,2-dioxaphospholanes, six-membered 1,3,2-dioxaphosphorinanes, seven-membered 1,3,2dioxaphosphepanes and eight-membered 1,3,6,2-trioxaphosphocanes, can dimerize in solution to give ten(Dutasta, Guimaraes, Martin \& Robert, 1975), twelve(Albrand, Dutasta \& Robert, 1974), fourteen(Dutasta, Guimaraes \& Robert, 1977), and sixteen(Dutasta \& Robert, 1978) membered rings respectively. The structural study of these medium-ring compounds, which are stable when the P atom is tetracoordinate (thiophosphonate), offers several points of interest. By keeping the same substituents attached to the P atom, and by changing the ring size, one may

[^0]follow the gradual modification of the chemical shift, δ, and hyperfine coupling constant, J, with the changes in bond angles and lengths. Also, knowledge of the solidstate conformation of these ring compounds when combined with NMR studies in solution (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P}$) will help towards a better understanding of the ring conformation in solution.

The structure of the monomer (I) has already been reported (Dutasta, Grand \& Robert, 1974; Grand \& Robert, 1978). We now report the structure of the cis isomer (II) which is obtained from the dimerization and sulphurization of (I) (Albrand, Dutasta \& Robert,

(I)

2-Thioxo-2,5,5-trimethyl-1,3,2-dioxaphosphorinane

(II)

2,8-Dithioxo-2,5,5,8,11,11-hexamethyl-1,3,7,9-tetraoxa-2,8diphosphacyclododecane

$$
\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~S}_{2}
$$

1974). The crystals were obtained from hot o-dichlorobenzene.

Cell parameters were determined by least-squares calculations from the positions of 25 reflexions measured on an automatic Nonius CAD-4 diffractometer, with Ni-filtered $\mathrm{Cu} K \alpha$ radiation.

The intensities of 3547 reflexions ($3<\theta<70^{\circ}$) were collected. Three check reflexions were recorded periodically and showed no fall in intensity. The intensities were corrected for Lorentz and polarization factors, but not for absorption ($\mu=42.22 \mathrm{~cm}^{-1}$). 2227 reflexions were judged observed $[I>3 \sigma(I)$].

The structure was solved with MULTAN (Germain, Main \& Woolfson, 1971). An E map based on 200 reflexions with $E>1.84$ allowed the location of all non-hydrogen atoms. The intensity statistics indicated space group $P \overline{1}$. Least-squares refinement of nonhydrogen atoms with ORFLS (Busing \& Levy, 1959) reached $R=\sum_{i}\left|F_{o}-F_{c}\right| / \sum\left|F_{o}\right|=0.073$ and $R_{w}=$ $\sum w\left(F_{o}-F_{c}\right)^{2} / \sum w F_{o}^{2}=0.086$.

Positional parameters are listed in Table 1, bond distances and angles in Table 2.*

Discussion. The bond lengths agree well with average values found for 1,3,2-dioxaphosphorinanes (Corbridge, 1974). The corresponding bond lengths in each of the four $\mathrm{P}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ parts of the molecule are equal within the error limit (3σ). The bond angles show some interesting features when compared with the values

[^1]Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$
E.s.d.'s in parentheses refer to the last digit.

	x	y	z
$\mathrm{O}(1)$	$8269(10)$	$10326(7)$	$1179(4)$
$\mathrm{P}(2)$	$10153(4)$	$8676(3)$	$1282(1)$
$\mathrm{O}(3)$	$10371(10)$	$8151(7)$	$2221(3)$
$\mathrm{C}(4)$	$9003(15)$	$7318(10)$	$2601(5)$
$\mathrm{C}(5)$	$9456(13)$	$7159(9)$	$3512(5)$
$\mathrm{C}(6)$	$8701(13)$	$8782(9)$	$3830(5)$
$\mathrm{O}(7)$	$6276(9)$	$9450(6)$	$3725(4)$
$\mathrm{P}(8)$	$5031(4)$	$11261(3)$	$3706(1)$
$\mathrm{O}(9)$	$5876(9)$	$12052(7)$	$2957(3)$
$\mathrm{C}(10)$	$4809(15)$	$12264(11)$	$2158(5)$
$\mathrm{C}(11)$	$6205(16)$	$12890(10)$	$1564(5)$
$\mathrm{C}(12)$	$8508(15)$	$11700(10)$	$1502(5)$
$\mathrm{C}(13)$	$12761(15)$	$9006(12)$	$1104(6)$
$\mathrm{S}(14)$	$9440(4)$	$7267(3)$	$638(1)$
$\mathrm{S}(15)$	$1896(4)$	$11671(3)$	$3707(2)$
$\mathrm{C}(16)$	$6191(15)$	$11947(11)$	$4513(5)$
$\mathrm{C}(17)$	$8196(16)$	$6128(10)$	$3905(6)$
$\mathrm{C}(18)$	$11988(14)$	$6409(11)$	$3709(6)$
$\mathrm{C}(19)$	$6525(20)$	$14384(10)$	$1831(5)$
$\mathrm{C}(20)$	$4886(18)$	$13244(12)$	$734(5)$

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ and their e.s.d.'s

$\mathrm{P}(2)-\mathrm{O}(1) \quad 1$	1.579 (5)	$\mathrm{P}(2)-\mathrm{O}(3)$	1.592 (6)
$\mathrm{P}(8)-\mathrm{O}(7) \quad 1$	1.577 (6)	$\mathrm{P}(8)-\mathrm{O}(9)$	1.576 (6)
$\mathrm{O}(1)-\mathrm{C}(12) \quad 1$	1.468 (12)	$\mathrm{O}(3)-\mathrm{C}(4)$	1.455 (12)
$\mathrm{O}(9)-\mathrm{C}(10) \quad 1$	1.471 (10)	$\mathrm{O}(7)-\mathrm{C}(6)$	1.473 (9)
$\mathrm{C}(11)-\mathrm{C}(12) \quad 1$	1.523 (11)	$\mathrm{C}(5)-\mathrm{C}(4)$	1.538 (11)
$\mathrm{C}(11)-\mathrm{C}(10) \quad 1$	1.535 (14)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.544 (11)
$\mathrm{P}(2)-\mathrm{S}(14) \quad 1$	1.923 (4)	$\mathrm{P}(8)-\mathrm{S}(15)$	1.920 (3)
$\mathrm{P}(2)-\mathrm{C}(13) \quad 1$	1.818 (11)	$\mathrm{P}(8)-\mathrm{C}(16)$	1.803 (10)
$\mathrm{C}(11)-\mathrm{C}(19) \quad 1$	1.554 (15)	$\mathrm{C}(5)-\mathrm{C}(17)$	1.541 (14)
$\mathrm{C}(11)-\mathrm{C}(20) \quad 1$	1.578 (13)	$\mathrm{C}(5)-\mathrm{C}(18)$	1.559 (14)
$\mathrm{O}(1)-\mathrm{P}(2)-\mathrm{O}(3)$	$105 \cdot 6$ (3)	$\mathrm{O}(7)-\mathrm{P}(8)-\mathrm{O}(9)$	$106 \cdot 8$ (3)
$\mathrm{P}(2)-\mathrm{O}(1)-\mathrm{C}(12)$	122.3 (5)	$\mathrm{P}(2)-\mathrm{O}(3)-\mathrm{C}(4)$	121.4 (5)
$\mathrm{P}(8)-\mathrm{O}(9)-\mathrm{C}(10)$	121.2 (5)	$\mathrm{P}(8)-\mathrm{O}(7)-\mathrm{C}(6)$	121.1(6)
$\mathrm{O}(1)-\mathrm{C}(12)-\mathrm{C}(11)$	108.1 (7)	$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	107.5 (7)
$\mathrm{O}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	107.1 (7)	$\mathrm{O}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	$107 \cdot 8$ (7)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$) 111.4 (6)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	110.4 (6)
$\mathrm{O}(1)-\mathrm{P}(2)-\mathrm{S}(14)$	$110 \cdot 1$ (3)	$\mathrm{O}(3)-\mathrm{P}(2)-\mathrm{S}(14)$	114.5 (3)
$\mathrm{O}(9)-\mathrm{P}(8)-\mathrm{S}(15)$	$115 \cdot 1$ (2)	$\mathrm{O}(7)-\mathrm{P}(8)-\mathrm{S}(15)$	109.4 (3)
$\mathrm{O}(1)-\mathrm{P}(2)-\mathrm{C}(13)$	106.9 (4)	$\mathrm{O}(3)-\mathrm{P}(2)-\mathrm{C}(13)$	101.4 (4)
$\mathrm{O}(9)-\mathrm{P}(8)-\mathrm{C}(16)$	$100 \cdot 6$ (4)	$\mathrm{O}(7)-\mathrm{P}(8)-\mathrm{C}(16)$	107.5 (3)
$\mathrm{C}(13)-\mathrm{P}(2)-\mathrm{S}(14)$	117.4 (3)	$\mathrm{C}(16)-\mathrm{P}(8)-\mathrm{S}(15)$	116.7 (2)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(19)$) 106.8 (8)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(19)$) 111.5 (7)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(20)$) 110.9 (7)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(20)$) $105 \cdot 3$ (7)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(17)$	107.4 (8)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(17)$	111.4 (7)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(18)$	$110 \cdot 3$ (8)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(18)$	106.7 (7)
$\mathrm{C}(19)-\mathrm{C}(11)-\mathrm{C}(20)$) 111.2 (7)	$\mathrm{C}(17)-\mathrm{C}(5)-\mathrm{C}(18)$	110.7 (7)

observed in rings of smaller size and which have the same groups attached to the P atom. By comparing a five- (Grand, unpublished), a six- (Dutasta, Grand \& Robert, 1974), and a seven-membered ring (Grand \& Robert, 1978) with the twelve-membered (II), it is found that the $\mathrm{O}-\mathrm{P}-\mathrm{O}$ ring angles are $97.6,103.5$, $105 \cdot 1$ and $106 \cdot 2^{\circ}$ respectively. Thus, one observes an increase of the $\mathrm{O}-\mathrm{P}-\mathrm{O}$ bond angle with an increase in ring size. The largest difference is between the five- and six-membered rings.

In the same rings as those mentioned above the $\mathrm{P}-\mathrm{O}-\mathrm{C}$ angles increase regularly with the ring size. The mean values are $111.3,115.7,119.9$ and 121.5° respectively, and show a shift of the O atom hybridization from $s p^{3}$ towards $s p^{2}$. This flexing of the alkoxy O atom bond angle has been termed the "hinge effect' (Verkade, 1974) and may have some interesting consequences concerning the complexing properties of these large rings.

The conformation of the twelve-membered ring of (II) (Fig. 1) is close to the square conformation found for cyclododecane (Dunitz \& Shearer, 1960) where the following sequence of $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ torsion angles is observed in the ring: $70,-161,69,68,-155,67,70$, $-163,69,68,-155,67^{\circ}$. This sequence may be compared with the values for (II): $87 \cdot 4,-173 \cdot 8,64 \cdot 3$, $65 \cdot 8,-159 \cdot 2,62 \cdot 5,87 \cdot 6,-173 \cdot 7,64 \cdot 8,63 \cdot 3$, $-160 \cdot 2,65 \cdot 2^{\circ}$ (Fig. 2).

In cyclododecanes, the introduction of gem-dimethyl substituents does not perturb the conformation, but the substituted C atoms are restricted to corner positions in

$$
\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~S}_{2}
$$

Fig. 1. cis-2,8-Dithioxo-2,5,5,8,11,11-hexamethyl-1,3,7,9-tetraoxa-2,8-diphosphacyclododecane.

Fig. 2. Torsion angles across the ring.
the ring as a result of steric requirements (Dale, 1973). Similarly, 1,3,7,9-tetraoxacyclododecane adopts the same conformation with the O atoms placed across the corners, as found by NMR for $1,3,7,9$-tetraoxacyclododecane (Borgen \& Dale, 1974), and for 2,2,8,8-tetra-methyl-1,3,7,9-tetraoxacyclododecane (Borgen, 1975).

In (II), the P and the gem-dimethyl C atoms are situated at the corners. This conformation satisfies the steric requirements due to the P substituents and the preferred gauche (\pm), gauche (\pm) conformation around the $\mathrm{P}-\mathrm{O}$ bond (Van der Veken \& Herman, 1977).

At room temperature, the ${ }^{1} \mathrm{H}$ NMR spectrum of (II) shows the two coupling constants ${ }^{3} J(\mathrm{POCH})$ to be nearly equal (5.5 and 6.5 Hz respectively). Such a value corresponds to a POCH dihedral angle close to 60° (Dutasta, Grand, Robert \& Taieb, 1974), in agreement with the conformation observed in the solid state.

References

Albrand, J. P., Dutasta, J. P. \& Robert, J. B. (1974). J. Am. Chem. Soc. 96, 4584-4587.
Borgen, G. (1975). Acta Chem. Scand. Ser. B, 29, 265272.

Borgen, G. \& Dale, J. (1974). Chem. Commun. p. 484.
Busing, W. R. \& Levy, H. A. (1959). ORFLS. Report ORNL 59-4-37. Oak Ridge National Laboratory, Tennessee.
Corbridge, D. E. C. (1974). The Structural Chemistry of Phosphorus, Ch. 14. Amsterdam: Elsevier.
Dale, J. (1973). Acta Chem. Scand. 27, 1149-1158.
Dunitz, J. D. \& Shearer, H. M. M. (1960). Helv. Chim. Acta, 43, 18-35.
Dutasta, J. P., Grand, A. \& Robert, J. B. (1974). Tetrahedron Lett. pp. 2655-2658.
Dutasta, J. P., Grand, A., Robert, J. B. \& Taieb, C. (1974). Tetrahedron Lett. pp. 2659-2662.

Dutasta, J. P., Guimaraes, A. C., Martin, J. \& Robert, J. B. (1975). Tetrahedron Lett. pp. 1519-1522.

Dutasta, J. P., Guimaraes, A. C. \& Robert, J. B. (1977). Tetrahedron Lett. pp. 801-804.
Dutasta, J. P. \& Robert, J. B. (1978). J. Am. Chem. Soc. 100, 1925-1927.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A 27, 368-376.
Grand, A. \& Robert, J. B. (1978). Acta Cryst. B34, 199204.

Van der Veken, B. J. \& Herman, M. A. (1977). J. Mol. Struct. 42, 161-170.
Verkade, J. G. (1974). Bioinorg. Chem. 3, 165-175.

Acta Cryst. (1978). B34, 3822-3825

Structure of Diethylammonium Diethyldithiocarbamate

By Anders Wahlberg
Institute of Chemistry, University of Uppsala, Box 531,S-751 21 Uppsala 1, Sweden

(Received 11 August 1978; accepted 6 September 1978)

Abstract

CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}_{2}\right]^{+}\left[\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{NCS}_{2}\right]^{-}\), $\mathrm{C}_{9} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{~S}_{2}$, monoclinic, $P 2, / c, a=11.175$ (2), $b=$ 7.755 (1), $c=15.605$ (2) $\AA, \beta=90.53(1)^{\circ}, Z=4$, $V=1352.3 \AA^{3}, D_{m}=1.094, D_{x}=1.092 \mathrm{Mg} \mathrm{m}^{-3}, \mathrm{~m} . \mathrm{p}$. $354-355 \mathrm{~K}$. The structure has been refined to $R\left(F^{2}\right)=$ 0.048 for 1546 reflexions and 206 varied parameters. It

[^0]: * Faculty members, Université Scientifique et Médicale de Grenoble.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33842 (23 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

